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Abstract. On the basis of a microscopic scattering theory, for a parabolic quantum well
system subjected to crossed magnetic and electric fields, the local field including the third-
order nonlinearity is determined. Then the optical response is investigated. It turns out that the
magnetic and electric fields produce notable changes in the optical properties.

1. Introduction

Recently, the study of optical properties associated with intersubband transitions of quantum
wells (QW) under magnetic or/and electric fields has been of increasing theoretical and
experimental interest; many novel physical properties have been predicted and observed
[1–4]. In particular, in the case of QW under crossed magnetic and electric fields, there are
significant modifications of the electrical states of the QW, due to the competing effects of
the confining potential and the potential resulting from the applied magnetic and electric
fields. Consequently, the optical properties have been changed significantly. This indicates
potential applications in infrared detectors and modulators. As is well known, of prime
importance for practical device application is knowledge of the range of the input optical
density that yields a linear response. Ahn and Chuang [5], Seilmeieret al [6], and Julienet
al [7] have studied the optical intersubband saturation response of GaAs QW experimentally
and theoretically, and information on the relaxation has been deduced. To our knowledge,
little has been done as regards investigating the intersubband saturation behaviour of QW
under crossed magnetic and electric fields.

On the other hand, remotely doped parabolic quantum wells (PQW) offer the opportunity
to exploit an interacting electron system in the transition region between two and three
dimensions [8–10]. Very recently, we have studied the linear optical response of a
PQW under crossed magnetic and electric fields [11]. Our study has shown that due to
the combination of the two parabolic confining forces, namely, one that is the quantum
confinement, and the other which arises from the magnetic and electric fields, changes in
the optical properties are evident for different applied magnetic and electric fields. It is also
found that in the case of a perfect PQW, the optical response is not sensitive to the applied
electric field, although the electric field changes the electronic structure.

In this paper we investigate the intersubband saturation of a PQW under crossed
magnetic and electric fields by employing a local-field approach which includes the third-
order nonlinearity. In section 2 the electronic structure of the PQW is derived, and in
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section 2.2 a microscopic local-field theory is applied to study the optical response of the
PQW. In section 3 detailed numerical results are presented. Conclusions are drawn in
section 4.

2. Theory

2.1. Electronic structure in the parabolic quantum well

In the following we consider a perfect infinitely high parabolic quantum well structure
subjected to a crossed electric fieldF (=(0, 0, F )) and magnetic fieldB (=(0, B,0)) and
choose a vector potentialA = (zB0, 0, 0) to describe the applied DC magnetic field. Since
in this case the momentum operatorspx andpy commute with the magnetic Hamiltonian,
and taking advantage of the translational invariance along the interfaces (thexy-plane), the
single-particle wave function takes the form

9(r) = 1

2π
ei(k‖·r)ψ(kx, z) (1)

wherek‖ = (kx, ky) indicates the in-plane wave vector of the electrons. Because of the
result obtained in [8], that in an ideal PQW structure the many-body effects (direct and
exchange Coulomb interactions) are negligible, in this paper we shall leave out the many-
body effects. Thus, under the influence of the crossed magnetic and electric fields,ψ(kx, z)

could be described by the one-dimensional Schrödinger equation

− h̄
2

2m

d2ψ(kx, z)

dz2
+ [V (kx, z)− ε(kx)]ψ(kx, z) = 0 (2)

where

V (kx, z) = 1

2
mω2

p(z− z0)
2+ 1

2m

[
h̄2k2

x −
(
h̄kxωc + eF

ωp

)2
]

(3)

z0 = h̄kxωc + eF
mω2

p

(4)

with ω2
p = ω2

0 + ω2
c , ωc = eB/m being the cyclotron (Larmor) frequency, andω0 the

oscillation frequency of the confining potential. The wave functionψ(kx, z) is a function of
kx as a result of thekx-dependence of the total potentialV (kx, z) appearing in equation (2).
z0 corresponds to the position of the cyclotron orbit centre in the absence of the parabolic
confinement. It is clear that the potential minimum has been displaced byz0, and the
potential V (kx, z) has also been moved by the last term in equation (3). After some
manipulation, the eigenenergies in the infinitely high PQW are given analytically by

εn(kx) = h̄ωp
(
n+ 1

2

)
+ 1

2m

[
h̄2k2

x −
(
h̄kxωc + eF

ωp

)2
]

(n = 0, 1, 2, . . .) (5)

and the wave functions have the following form:

ψm(z− z0) = Hm(z− z0) exp[−(z− z0)
2/2] (6)

where theHm(z − z0) are the Hermite polynomials. It is found from equation (5) that in
the absence of the electric field the effective massm(B) = m(0)ω2

p/ω
2
0. From the equations

above it is clear that the applied magnetic and electric fields have cross-coupling effects
on the total potential. Accordingly, the wave functions and eigenenergies are affected by
the coupling effects. But the energy separation between levels remains the same, namely,
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h̄ωp/2, for the same magnetic field. This implies that in an ideal PQW, an electric field has
the same effect on all of the states.

In the low-temperature limit (T → 0), the electron density in the PQW is given by

n(z) =
√

2m

π2h̄

∑
n

∫
ϑ [εF − εn(kx)][εF − εn(kx)]1/2|ψn(kx, z)|2 dkx (7)

whereϑ is the Heaviside step function.
The Fermi energy,εF , is determined from the above equation by using the global

charge-neutrality condition. Assuming that only the ground state is populated by electrons,
from equation (7), one obtains

a0k
2
x + a1kx + a2 6 0 (8)

wherea0 = h̄2wx2
0, a1 = −2eFh̄ωc, anda2 = −[e2F 2 + 2mω2

p(εF − 1
2h̄ωp)]. Thus, kmax

andkmin are determined. For realk, this requires

εF >
1

2
h̄ωp − e2F 2

2mω2
0

. (9)

It is apparent from equation (8) that due to the coupling effects of the crossed magnetic and
electric fields described via the terma1, in generalkmax 6= kmin.

2.2. The local field in the PQW structure

We now consider the situation in which an external p-polarized monochromatic (angular
frequencyω) plane waveE(r, t) = EB(z)ei(q‖·r−ωt) pumps the PQW structure at an angle
of incidenceθ . The PQW is sandwiched by two semi-infinite isotropic media characterized
by their dielectric constants. For simplicity we assume that the dielectric constants of the
barriers are real and equal toεB . In accordance with the scattering theory, and employing
the Green’s function technique, the fieldE(z) in the PQW obeys the integral equation [12]

E(z) = EB(z)−
∫

G(z− z′)[J (1)(z′)+ J (3)(z′)] dz′ (10)

whereEB(z) is the external field, andG(z− z′) is the appropriate Green’s function, which
is given [13] by

G(z− z′) =
(
c

ω

)2 exp(iq⊥|z− z′|)
2iq⊥

(
q2
⊥ q⊥q‖ sgn(z′ − z)

q⊥q‖ sgn(z′ − z) q2
‖

)
+
(
c

ω

)2

δ(z′ − z)ez × ez (11)

wherec is the speed of light in the medium, sgn stands for signum, andδ indicates the Dirac
function; q = (q‖, q⊥) is the wave vector of the incident light in the scattering plane (the
xz-plane), andez is the unit vector along thez-direction. The electromagnetic propagating
(radiation) properties (z′ → z) have been well described by the so-called direct term (the
first term); also the self-field dynamics is included in the second term.

The induced linear current density is determined via nonlocal constitutive relations, and
is given by

J (1)(z′) =
∫
σ(z′, z′′)E(z′′) dz′′ =

∫
T(kx, z′)F (kx) dkx (12)
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whereσ(z′, z′′) is the nonlocal linear conductivity tensor (an explicit expression for it is
given in reference [12]), and

T(kx, z′) =
(
φ(kx, z

′) 0
0 8(kx, z

′)

)
(13)

F (kx) = α(kx)β(kx) (14)

where the elements of the tensorα(kx) are given by

αxx(kx) = 23/2µ0e
2h̄

π2
√
m

[εF − ε1(kx)]1/2

[h̄(ω + i/τ)]2− [ε21(kx)]2
k2
xε21(kx) (15)

αxz(kx) = −αzx(kx) = i
√

2µ0e
2h̄2(ω + i/τ)

π2
√
m

[εF − ε1(kx)]1/2

[h̄(ω + i/τ)]2− [ε21(kx)]2
kx (16)

αzz(kx) = µ0e
2h̄√

2π2m3/2

[εF − ε1(kx)]1/2

[h̄(ω + i/τ)]2− [ε21(kx)]2
ε21(kx). (17)

The quantityβ(kx) = [βx(kx), βz(kx)] is defined as

β(kx) =
∫

T(kx, z′′)E(z′′) dz′′. (18)

The induced third-order nonlinear current density entering in equation (10),J (3)(z′),
can be derived from the density-matrix approach viaJ (3)(r, ω) = Tr{ρ(3)1 j0}, ρ(3)1 being the
third-order part of the density-matrix operator, andj0 being the free part of the current-
density operator (for a full expression the reader is referred to reference [14]). Here in the
case of a two-level system, in order to simplify the expression and without losing general
features, we only consider the leading term, namely, thez-component, and it is given by

J (3)z (z′) =
∫
S(kx)[εF − ε1(kx)]

1/2|βz(kx)|2βz(kx)8(kx, z′) dkx (19)

where

S(kx) = −
√

2mµ0e
4h̄3

4π2m4ω2

[
1

h̄(ω + i/τ)− ε21(kx)

][(
ω + iτ

2ω + i/τ
+ ω + i/τ

i/τ

)
× 1

[h̄(ω + i/τ)]2− [ε21(kx)]2
+ −ω + i/τ

i/τ

1

[h̄(−ω + i/τ)]2− [ε21(kx)]2

]
(20)

whereτ is introduced as the phenomenological relaxation time of the conduction electrons
associated with the intersubband transitions, in order to account for the damping. One may
notice in equation (19) that the light intensity dependence is introduced via|βz(kx)|2. In the
derivation performed above, we have assumed that only the ground state is partly populated,
and introduced theansatz

ε21(kx) = ε2(kx)− ε1(kx) (21)

φ(kx, z) = ψ2(kx, z)ψ1(kx, z) (22)

and

8(kx, z) = ψ1(kx, z)
dψ2(kx, z)

dz
− ψ2(kx, z)

dψ1(kx, z)

dz
. (23)

One may see in section 3 that due to the presence of the crossed magnetic and electric
fields, the cross-coupling between thex- and z-direction motion of the electrons, even in
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the long-wavelength limit, is significant, whereas in the absence of a magnetic field the
cross-coupling is dramatically decreased [14].

It is clear that in order to obtain the local field, we have to determine the only unknown
quantityβ(kx). To determine the unknown quantityβ(kx), one has to return to equation
(10), and multiplying equation (10) withT(kx, z), then integrating the resulting equation
over z, β(kx) is uniquely determined via the following integral equations:

β(kx) =N (kx)−
∫ ∫

T(kx, z)G(z− z′)[J (1)(z′)+ J (3)(z′)] dz′ dz (24)

where

N (kx) = [Nx(kx), Nz(kx)] =
∫

T(kx, z)EB(z) dz. (25)

In order to simplify the numerical calculations without affecting the general physical
features, one may utilize the fact that the thickness of the PQWd � λ, λ being the
wavelength of the light used to pump the PQW system, and neglect the slow variation
of the external field across the PQW—that is, one may set exp(iq‖z) = 1. Hence, one
immediately realizes that

Nx(kx) =
∫
φ(kx, z) dz EBx = 0. (26)

One may make the expression forβ(kz) even more concise by using the facts that, in the
intersubband transitions, thez-component of the field in mainly responsible for the optical
process, which is rapidly varying across the well, and that thex-component of the local
field, which slowly varies across the PQW [13–15], approximates to

βx(kx) ' 0. (27)

One finds that the only undetermined quantity, thez-component ofβ(kx), βz(kx), is thus
given by

βz(kx)−
∫
κzz(kx, k

′
x)[αzz(k

′
x)+ S(kx)

√
εF − ε1(k′x)|βz(k′x)|2]βz(k

′
x) dk′x = Nz(kx) (28)

where

κzz(kx, k
′
x) =

∫ ∫
8(kx, z)Gzz(z− z′)8(k′x, z′) dz dz′. (29)

Having determined the local field in the PQW, one can easily proceed with the
calculation of the absorption coefficient by putting the observation points outside the PQW
(z→±∞); one finds that the absorbanceAp is given by

Ap = 1− |rp|2− |tp|2 (30)

where the Fresnel reflection (rp) and transmission (tp) coefficients of the PQW structure are
given by

rp = −E(<)x /EBx (31)

and

tp = 1+ E(>)x /EBx (32)

with

E(<)x = −E(>)x =
(
c

ω

)2
q‖
2i

∫
[αzz(kx)+ S(kx)

√
εF − ε1(kx)|βz(kx)|2]βz(kx)

×
∫
8(kx, z

′) dz′ dkx. (33)
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Here we notice that neglecting the local-field effect implies thatE(z) ≡ EB(z) in equation
(10), or β(kx) ≡ N (kx). In the calculation of the optical absorption one can easily
implement this by replacingβz(kx) with Nz(kx) in equation (33), which cannot give a correct
prediction of the optical absorption (e.g. the location of the resonant peak, the absorption
in magnitude, as well as the shape of the spectrum). If one takes the external field as the
local field, it can be easily seen from equation (33) that the resonant peak is exactly located
at the electronic resonanceε21 due toαzz and S(kx), which have a resonance atε21, and
the local-field resonance, which is manifested viaβzz, is left out. Meanwhile, due to the
self-dynamics, the actual location is blue shifted from the electronic resonance in energy
[16]. From previous studies of the local field in quantum well structures [11–16] it has been
found that for the intersubband transitions in which thez-component of the field is mainly
responsible for the transitions, with increase of thez-component the local-field effects play
a more important role in determining the optical response, owing to the enhanced induced
linear (J (1)(z′)) and nonlinear current densities (J (3)(z′)) in equation (10)—whereas the
x-component of the field, which is found to be slowly varying across the well [14], can
be well approximated byEx(z) ' EBx . Also a higher electron density means that more
electrons can contribute to the intersubband transition process, which can lead to a bigger
induced current density; in such a case the local field can give rise to bigger corrections to
the optical response.

3. Numerical results and discussion

In the following we present detailed numerical calculations of the optical absorption of a
GaAs/AlGaAs PQW in the presence of uniform crossed magnetic and electric fields. Here,
for the sake of simplicity, we neglect the variation of the effective mass across the PQW
(since the Al composition in the well region varies parabolically), andm = 0.065m0 is
used. Taking the ratio 60:40 for the band-edge discontinuity, the conduction barrier height
is thus taken to beVc = 240 meV. The oscillation frequencyω0 of the PQW is determined
via

ω0 = 2

d

√
2Vc
m

(34)

whered is the well width at the top, andVc = 240 meV. The other parameters used are:
the dielectric constantεB = 13.1, the doping concentration 7× 1015 m−3, and the angle
of incidenceθ = 73◦. As far as the relaxation process is concerned, we assume that the
variations of the magnetic and electric fields do not affect the relaxation constant, and this
is taken asτ = 1.0 ps. The optical excitation intensity as related to the amplitude of the
field, E0, is given byI0 = 1

2ε0c0

√
εB |E0|2.

Figure 1 shows the optical absorption spectra as a function of the incident energy for
different magnetic fields, such asB = 0, 10, 15 T. In (a) the thicknessd of the PQW is
400Å, and in (b)d = 800Å. We know that the optical response of the PQW is not sensitive
to the electric field [9, 11], but in order to see the coupling between the applied magnetic
and electric fields, here we keep the electric field set atF = 10 kV cm−1. It seems from
figure 1(a) that when the light intensityI0 = 0, with increase in the magnetic field, the
peak of the absorption spectrum moves upwards in energy, and the amplitude is reduced. It
is known that the peak corresponds to the local-field resonance. The upwards shift can be
explained by the diamagnetic shift. From equation (5) it is clear that the energy separation
is increased with the increase of the magnetic field. Thus the local-field resonance condition
is changed. This is manifested by the upwards shift. The reduction of the magnitude of
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Figure 1. The absorbance as a function of incident energy for different magnetic fields, namely,
B = 0 T (curve 1), 10 T (curve 2), and 15 T (curve 3). In (a),d = 400Å and in (b)d = 800Å.
The electric field isF = 10 kV cm−1, and the light intensity is 0 kW cm−2 (long-dashed line),
2 kW cm−2 (solid line), and 6 kW cm−2 (short-dashed line), respectively. The relaxation time
is τ = 1.0 ps.

the absorption peak is due to the competing effects of the confining potential and the force
resulting from the applied crossed magnetic and electric fields. One should note that in figure
1(a) the quantum confinement is strong (ω0 > ωc). As the magnetic field increases, the
broadening of the absorption spectrum is mainly due to the coupling effect of the magnetic
and electric fields. As the light intensity increases,I0 = 2 kW cm−2, the saturation of
the absorption becomes evident. The location of the peak remains the same for the same
magnetic field, and the amplitudes of the peaks are almost the same for different magnetic
fields. When the intensityI0 is increased further, say toI0 = 6 kW cm−2, a strong saturation
occurs; for curve 1, two peaks appear because of the saturation [5]. We can see that the
absorption is reduced by nearly half. It appears that upon increase of the applied magnetic
field, the absorption becomes less sensitive to the light intensity.



8256 Xin Chen

In order to get a deeper insight into the saturation effect, we performed a calculation
for a thicker PQW,d = 800 Å, the other parameters remaining the same. This is shown
in figure 1(b). In this case, the quantum confinement is looser than in figure 1(a). In the
limit I0 = 0, for various magnetic fields, the amplitude of the absorption starts to decrease
(0–10 T) and then increases (10–15 T) due to the competing effects. It is interesting to
note that whenI0 = 2 kW cm−2, curve 3 becomes tilted. As the light intensity continues
to increase, because of the strong saturation, the absorption spectrum is distorted, and the
asymmetric shape becomes more apparent. It appears from a comparison with figure 1(a)
that with the increase of the thickness of the PQW, the saturation effect becomes more
pronounced.

4. Conclusions

On the basis of a microscopic local-field theory, the optical intersubband saturation of the
GaAs/AlGaAs PQW structure subjected to crossed magnetic and electric fields has been
investigated. It is shown that due to the presence of the magnetic and electric fields, the
intersubband optical absorption peak is shifted upward with increase in the magnetic field;
also, with increase in the thickness of the PQW, the PQW becomes more sensitive to the
increase of the light intensity. We have shown that in accordance with the competition
between the parabolic quantum confinement and that arising from the magnetic and electric
fields, the optical absorption spectrum is changed. Our local-field calculations show that the
absorption spectrum line is broadened with increase of the applied magnetic field, because
the cross-coupling becomes stronger.
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